杮暥傊僗僉僢僾

堛椕恖堢惉僙儞僞乕

嵅乆栘 懽巎YASUSHI SASAKI


僾儘僼傿乕儖
丂妛楌
丂丂丂1982.3 杒奀摴嶥杫撿崅摍妛峑 懖嬈
丂丂丂1988.3 嶥杫堛壢戝妛堛妛晹堛妛壢 懖嬈
丂丂丂2001.12 嶥杫堛壢戝妛偱攷巑乮堛妛乯偺妛埵傪庢摼

丂怑楌乮忢嬑乯
丂丂丂1988.5 嶥杫堛壢戝妛晅懏昦堾椪彴尋廋堛乮戞堦撪壢乯
丂丂丂1989.4 敓娰屲椗妔昦堾丂尋廋堛
丂丂丂1991.4 徏慜挰棫徏慜昦堾丂撪壢堛巘
丂丂丂1992.6 嶥杫堛壢戝妛晬懏昦堾恌椕堛 乮戞堦撪壢乯
丂丂丂1994.4 嶥杫戞堦昦堾丂撪壢堛挿
丂丂丂1998.1 嶥杫偲偒傢昦堾丂撪壢堛挿
丂丂丂1998.4 嶥杫堛壢戝妛戞堦撪壢丂尋媶惗
丂丂丂1999.10 嶥杫堛壢戝妛堛妛晹丒偑傫尋媶強丒暘巕惗暔妛晹栧丂彆庤
丂丂丂2004.4 嶥杫堛壢戝妛堛妛晹丒偑傫尋媶強丒暘巕惗暔妛晹栧丂島巘
丂丂丂2008.6 嶥杫堛壢戝妛堛妛晹丒偑傫尋媶強丒暘巕惗暔妛晹栧丂弝嫵庼
丂丂丂2011.4 嶥杫堛壢戝妛堛妛晹丒僼儘儞僥傿傾堛妛尋媶強丒僎僲儉堛壢妛晹栧丂弝嫵庼
丂丂丂2018.1 嶥杫堛壢戝妛堛椕恖堢惉僙儞僞乕丂嫵梴嫵堢尋媶晹栧丒惗暔妛丂嫵庼

丂強懏妛夛
丂丂丂擔杮娻妛夛乮昡媍堳乯
丂丂丂擔杮椪彴暘巕堛妛夛乮昡媍堳乯
丂丂丂擔杮DDS妛夛乮昡媍堳乯
丂丂丂擔杮揹婥塲摦妛夛乮昡媍堳乯
丂丂丂擔杮暘巕惗暔妛夛
丂丂丂擔杮恖椶堚揱妛夛
丂丂丂American Association for Cancer Research (AACR)
丂丂丂International Society of Oncology & BioMarkers (ISOBM)
丂丂丂擔杮堛妛嫵堢妛夛
丂丂丂擔杮撪壢妛夛
丂丂丂擔杮徚壔婍昦妛夛乮巟晹昡媍堳乯
丂丂丂擔杮徚壔婍撪帇嬀妛夛
丂丂丂擔杮娞憻妛夛
丂丂丂擔杮娻帯椕妛夛
丂丂丂杒奀摴娻択榖夛乮埾堳乯

丂丂丂Translational Oncology: International Advisory Review Board

丂丂丂Molecular Medicine Reports: Editorial Board

丂丂丂Gastroenterology Insights: Editorial Board


丂柶嫋丒帒奿
丂丂丂堛巘柶嫋丄擔杮撪壢妛夛擣掕撪壢堛丄擔杮徚壔婍昦妛夛徚壔婍昦愱栧堛丄
丂丂丂擔杮徚壔婍撪帇嬀妛夛愱栧堛丄擔杮娞憻妛夛娞憻愱栧堛丄
丂丂丂擔杮偑傫帯椕擣掕堛婡峔偑傫帯椕擣掕堛丄擔杮偑傫帯椕擣掕堛婡峔偑傫帯椕擣掕堛

尋媶僥乕儅
侾丏僎僲儉忣曬傪婎斦偲偟偨乽偑傫偺恌抐丒帯椕朄乿偺尋媶奐敪
丂嬤擭丄僎僲儉尋媶暘栰偵偍偗傞墫婎攝楍夝愅媄弍偑旘桇揑偵恑曕偟偰偍傝丄偝傑偞傑側偑傫庮偵偍偗傞堚揱巕堎忢偺摿挜偑柧傜偐偵側傝偮偮偁傞丅堦斒揑偵僸僩惉恖庮釃1徢椺偵偮偒20-200屄傎偳偺non-synonymous曄堎傪擣傔傞偑丄幚嵺偵敪偑傫丒恑揥偵婑梌偡傞堚揱巕曄堎偼偛偔傢偢偐偱丄懡偔偼嬼慠偵拁愊偟偨偩偗偺曄堎乮passenger曄堎乯偲峫偊傜傟傞丅屄乆偺偑傫徢椺偺惗暔妛揑摿惈傪棟夝偡傞偨傔偵偼丄偑傫嵶朎偺憹怋傗惗懚偵惓偺塭嬁傪媦傏偡driver曄堎偺摨掕偑廳梫偱偁傞丅偝傜偵帯椕昗揑偺壜擻惈偑偁傞堚揱巕曄堎傗梈崌堚揱巕乮偄傢備傞druggable target乯偑柧傜偐偵側偭偰偍傝丄昗揑偲側傞僎僲儉堎忢傪帠慜偵摨掕偟丄帯椕朄傪慖戰偡傞僋儕僯僇儖僔乕僋僄儞僗偑椪彴偺応偱傕嫮偔媮傔傜傟傞傛偆偵側偭偰偒偨丅堚揱巕僷僱儖傪梡偄偨偑傫僎僲儉夝愅偑愭恑堛椕丄偁傞偄偼曐尟恌椕偱壜擻偲側偭偨偑丄昗弨帯椕偑桳岠偱側偐偭偨応崌傗丄帯椕朄偑側偄婓彮偑傫傗彫帣偑傫側偳偺姵幰偵尷傜傟傞丅崱屻丄栐梾揑側僎僲儉堎忢夝愅傪峀偔椪彴偵墳梡偡傞偨傔偵偼丄姶庴惈傪堐帩偟偨傑傑丄掅僐僗僩壔丄娙寜壔偑昁梫偱偁傞丅懱塼拞偵旝検偵懚嵼偡傞弞娐庮釃DNA乮circulating tumor DNA丗 ctDNA乯傪専弌偡傞liquid biopsy偵偍偄偰傕丄姶搙傗婾梲惈偺攔彍側偳丄媄弍揑側夵慞揰傕懡偔懚嵼偡傞丅偙傟傑偱NGS乮敿摫懱僔乕僋僄儞僒乕丄Ion Torrent僔僗僥儉乯傪梡偄偨傾儞僾儕僐儞僔乕僋僄儞僗偵傛傝丄FFPE丄ctDNA側偳旝検僒儞僾儖偺偑傫僎僲儉夝愅傪峴偭偰偒偨丅慻怐宆丒敪惗憻婍摿堎揑側堚揱巕夝愅僷僱儖傪奐敪偟偰偒偨宱尡丄偍傛傃NGS偵傛傞挻掅昿搙曄堎夝愅僔僗僥儉偺妶梡偵傛偭偰僋儕僯僇儖僔乕僋僄儞僗偺栤戣揰傪夝寛偟丄偑傫徢椺偺乽屄惈乿傪岠棪揑偐偮掅僐僗僩偱夝愅偟丄昦忬傪儌僯僞儕儞僌偱偒傞屄暿壔堛椕偺妋棫傪栚巜偟偰偄傞丅





庡側娭楢嬈愌丗
  1. 1.        Kogo R, Manako T, Iwaya T, Nishizuka S, Hiraki H, Sasaki Y, Idogawa M, Tokino T, Koide A, Komune N, Yasumatsu R, Nakagawa T. Individualized circulating tumor DNA monitoring in head and neck squamous cell carcinoma. Cancer Med. in press.乮摢寊晹滸暯忋旂娻26徢椺傪懳徾偵帯椕慜屻偺ctDNA偺暘愅偑帯椕岠壥偲嵞敪儌僯僞儕儞僌偵桳梡偐傪昡壙偟偨丅崻帯揑帯椕屻偵ctDNA偑堿惈壔偟側偄丄傑偨偼堿惈壔屻憗婜偵梲揮壔偟偨徢椺慡椺偱嵞敪傪擣傔丄ctDNA偑摢寊晹滸暯忋旂娻偺桳朷側僶僀僆儅乕僇乕偱偁傞偙偲偑帵嵈偝傟偨丅乯

    2.        Oike T, Sekiguchi Y, Yoshimoto Y, Oike T, Ando K, Gu W, Sasaki Y, Tokino T, Iwase A, Ohno T. Mutation Analysis of Radioresistant Early-Stage Cervical Cancer. Int J Mol Sci. 23: 2021.乮崻帯揑曻幩慄椕朄偱帯椕偝傟偨stage IB巕媨栩娻18徢椺偺栐梾揑僎僲儉夝愅偐傜丄KRASSMAD4偺摨帪曄堎偑嬊強嵞敪偵娭楢偡傞偙偲傪悇應偟丄in vitro丄偍傛傃in silico偺宯偱専徹傪峴偭偨丅乯

    3.        Fujisawa R, Iwaya T, Endo F, Idogawa M, Sasaki N, Hiraki H, Tange S, Hirano T, Koizumi Y, Abe M, Takahashi T, Yaegashi M, Akiyama Y, Masuda M, Sasaki A, Takahashi F, Sasaki Y, Tokino T, Nishizuka SS. Early dynamics of circulating tumor DNA predict chemotherapy responses for patients with esophageal cancer. Carcinogenesis. 42: 1239-49, 2021.弶夞帯椕偱懡嵻暪梡壔妛椕朄傪巤峴偟偨怘摴娻42椺傪懳徾偲偟偰丄NGS丄偍傛傃僨僕僞儖PCR偵傛傝壔妛椕朄1僒僀僋儖慜屻偺ctDNA傪夝愅偟丄ctDNA曄摦偐傜帯椕岠壥傪崅惛搙偱梊應壜擻偱偁傞偙偲傪柧傜偐偵偟偨丅乯

    4.        Tanimizu N, Ichinohe N, Sasaki Y, Itoh T, Sudo R, Yamaguchi T, Katsuda T, Ninomiya T, Tokino T, Ochiya T, Miyajima A, Mitaka T. Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nature communications 12: 3390, 2021.怴婯帯椕栻偺奐敪傗撆惈帋尡偵巊梡壜擻側攟梴宯傪峔抸偡傞偨傔偵丄抇廯攔煏楬傪桳偟偨娞憻僆儖僈僲僀僪偺奐敪偵惉岟偟偨丅杮尋媶偱偼丄偦偺婡擻昡壙偺偨傔偵RNA-seq傪峴偭偨丅乯

    5.        Iwaya T, Endo F, Takahashi F, Tokino T, Sasaki Y, Nishizuka SS, Collaborators. Frequent tumor burden monitoring of esophageal squamous cell carcinoma with circulating tumor DNA using individually designed digital PCR. Gastroenterology. 160: 463-465, 2021.乮寣塼拞傪棳傟傞姵幰摿桳偺偑傫桼棃DNAcirculating tumor DNA, ctDNA乯偵偮偄偰丄NGS丄偍傛傃僨僕僞儖PCR傪梡偄偨挻崅姶搙専嵏傪妋棫偟丄怘摴滸暯忋旂姵幰恌椕偵偍偗傞幚梡惈傪柧傜偐偵偟偨丅乯

    6.        Yoshimoto Y, Sasaki Y, Murata K, Noda SE, Miyasaka Y, Hamamoto J, Furuya M, Hirato J, Suzuki Y, Ohno T, Tokino T, Oike T, Nakano T. Mutation profiling of uterine cervical cancer patients treated with definitive radiotherapy. Gynecol Oncol. 159: 546-553, 2020.106柤偺巕媨栩娻崻帯揑曻幩慄帯椕姵幰偺帯椕慜惗専FFPE慻怐偐傜409偑傫娭楢堚揱巕偺傾儞僾儕僐儞僔乕僋僄儞僗傪峴偄丄PIK3CA36.8%乯丄ARID1A35.8%乯丄NOTCH128.3%乯摍丄崅昿搙曄堎堚揱巕傪摨掕偟偨丅傑偨丄FGFR family偵曄堎傪桳偡傞孮偱偼桳堄偵嵞敪偑懡偄偙偲傪尒弌偟偨丅乯

    7.        Ishiguro K, Sasaki Y, Takagi Y, Niinuma T, Suzuki H, Tokino T, Hayashi T, Takahashi T, Igarashi T, Matsuno Y. Aggressive variant of splenic marginal zone lymphoma characterized using a cancer panel test and treated with rituximab-containing chemotherapy: A case report. Medicine (Baltimore). 99: e21938, 2020.媫懍偵恑峴偟偨銪曈墢懷儕儞僷庮偺1徢椺偵偮偄偰丄栐梾揑僎僲儉夝愅傪峴偭偨丅TP53曄堎偼擣傔側偐偭偨偑丄偙偺幘姵偺埆惈搙偵娭梌偡傞壜擻惈偺偁傞僎僲儉堎忢傪摨掕偟偨丅乯

    8.        Ota R, Sawada T, Tsuyama S, Sasaki Y, Suzuki H, Kaizaki Y, Hasatani K, Yamamoto E, Nakanishi H, Inagaki S, Tsuji S, Yoshida N, Doyama H, Minato H, Nakamura K, Kasashima S, Kubota E, Kataoka H, Tokino T, Yao T, Minamoto T. Integrated genetic and epigenetic analysis of cancer-related genes in non-ampullary duodenal adenomas and intramucosal adenocarcinomas. J Pathol. 252: 330-42, 2020. 廫擇巜挵態庮丒擲枌撪娻102昦曄偵偮偄偰丄怴婯偵奐敪偟偨75偺偑傫娭楢堚揱巕偱峔惉偝傟傞堚揱巕僷僱儖傪梡偄偰曄堎夝愅傪峴偭偨丅偦偺寢壥丄態庮偐傜擲枌撪娻偵摓傞昦曄偺昿搙偼掅偔丄adenoma-carcinoma sequence偺娭梌偼尷掕揑偱偁傞偙偲偑帵嵈偝傟偨丅

    9.        Udagawa C, Sasaki Y, Tanizawa Y, Suemizu H, Ohnishi Y, Nakamura Y, Tokino T, Zembutsu H. Whole-exome sequencing of 79 xenografts as a potential approach for the identification of genetic variants associated with sensitivity to cytotoxic anticancer drugs. PLoS One. 15: e0239614, 2020. 12偺慻怐桼棃偺79庬椶偺僸僩xenograft儌僨儖偵偮偄偰丄慡僄僋僜儞夝愅傪峴偄丄9庬椶偺峈娻嵻偺姶庴惈偵娭楢偡傞162偺僶儕傾儞僩傪摨掕偟偨丅乯

    10.      Yokose T, Kitago M, Matsuda S, Sasaki Y, Masugi Y, Nakamura Y, Shinoda M, Yagi H, Abe Y, Oshima G, Hori S, Yusuke F, Nakano Y, Endo Y, Abe K, Tokino T, Kitagawa Y. Combination of KRAS and SMAD4 mutations in formalin-fixed paraffin-embedded tissues as a biomarker for pancreatic cancer. Cancer Sci. 111: 2174-82, 2020.乮鋁娗態娻50徢椺偺FFPE慻怐偵偮偄偰偑傫娭楢堚揱巕偺儂僢僩僗億僢僩夝愅傪峴偭偨丅偦偺寢壥丄KRASSMAD4偺曄堎傪摨帪偵擣傔傞徢椺偑桳堄偵梊屻晄椙偱偁傞偙偲傪柧傜偐偵偟偨丅乯

    11.  Hida T, Idogawa M, Okura M, Sugita S, Sugawara T, Sasaki Y, Tokino T, Yamashita T, Uhara H. Genetic analyses of mosaic neurofibromatosis type 1 with giant cafe-au-lait macule, plexiform neurofibroma and multiple melanocytic nevi. J Dermatol. 47: 658-62, 2020.嫄戝側僇僼僃僆儗斄丄旂晢恄宱慄堐庮丄偍傛傃懡敪惈儊儔僲僒僀僩曣斄傪敽偆儌僓僀僋宆恄宱慄堐庮徢1宆徢椺偺慡僄僋僜儞夝愅傪峴偭偨丅乯

    12.        Nakanishi H, Sawada T, Kaizaki Y, Ota R, Suzuki H, Yamamoto E, Aoki H, Eizuka M, Hasatani K, Takahashi N, Inagaki S, Ebi M, Kato H, Kubota E, Kataoka H, Takahashi S, Tokino T, Minamoto T, Sugai T, Sasaki Y. Significance of gene mutations in the Wnt signaling pathway in traditional serrated adenomas of the colon and rectum. PLoS One. 15: e0229262, 2020.戝挵嫎帟忬昦曄76徢椺傪懳徾偲偟丄怴婯偵奐敪偟偨戝挵娻堚揱巕僷僱儖傪梡偄偰曄堎夝愅傪峴偭偨丅偦偺寢壥丄柍宻惈嫎帟忬態庮乮SSA乯偲斾妑偟丄嫎帟忬態庮乮TSA乯偱偼Wnt僔僌僫儖娭楢暘巕偺堚揱巕曄堎偲SMOC1堚揱巕儊僠儖壔偑崅昿搙偵傒傜傟丄SSA偲偼堎側傞TSA撈帺偺敪娻宱楬偑懚嵼偡傞偙偲偑帵嵈偝傟偨丅乯

    13.      Ogi K, Kobayashi J, Nakagaki T, Okamoto J, Koike K, Hirokawa N, Someya M, Sakamoto H, Takada K, Tokino T, Sasaki Y, Hiratsuka H, Miyazaki A. Chemotherapy after progression on nivolumab is essential for responders with genetic alterations of driver gene: Review of two recurrent/metastatic oral squamous cell carcinoma patients. Oral Oncol. 102: 104509, 2020.柶塽僠僃僢僋億僀儞僩慾奞嵻nivolumab帯椕屻偵媬嵪壔妛椕朄傪峴偭偨岥峯滸暯忋旂娻2椺偺僎僲儉夝愅傪峴偄丄帯椕岠壥偲偺娭楢惈傪峫嶡偟偨丅乯

    14.      Fujita Y, Matsuda S, Sasaki Y, Masugi Y, Kitago M, Yagi H, Abe Y, Shinoda M, Tokino T, Sakamoto M, Kitagawa Y. Pathogenesis of multiple pancreatic cancers involves multicentric carcinogenesis and intrapancreatic metastasis. Cancer Sci. 111: 739-48, 2020.9椺偺摨帪惈懡敪鋁娻偺堚揱巕曄堎夝愅傪峴偄丄懡拞怱惈敪娻偲鋁撪揮堏偵暘椶偱偒傞偙偲傪帵偟偨丅鋁撪揮堏徢椺偱偼庡昦憙偲暃昦憙偺曄堎僾儘僼傽僀儖偑傎傏堦抳偟偰偍傝丄昦棟妛揑側恌抐偲傕柕弬偟側偐偭偨丅傑偨丄鋁撪揮堏徢椺偼丄懡拞怱惈敪娻徢椺偵斾傋桳堄偵梊屻晄椙偱偁傞偙偲傪柧傜偐偵偟偨丅)

    15.      Idogawa M, Hida T, Tanaka T, Ohira N, Tange S, Sasaki Y, Uhara H, Masumori N, Tokino T, Natori H. Renal angiomyolipoma (AML) harboring a missense mutation of TSC2 with copy-neutral loss of heterozygosity (CN-LOH). Cancer Biol Ther. 21: 315-319, 2020.乮傑傟側幘姵偱偁傞寣娗嬝帀朾庮angiomyolipomaAML乯偺慡僄僋僜儞夝愅傪峴偄丄TSC2 偺儈僗僙儞僗懱嵶朎曄堎偲僐僺乕悢曄壔偺側偄LOH傪摨掕偟丄AML敪徢偵娭傢偭偰偄傞偙偲傪帵偟偨丅乯

    16.      Darwis NDM, Nachankar A, Sasaki Y (Contributed equally), Matsui T, Noda S, Murata K, Tamaki T, Ando K, Okonogi N, Shiba S, Irie D, Kaminuma T , Kumazawa T, Anakura M, Yamashita S, Hirakawa T, Kakoti S, Hirota Y, Tokino T, Iwase A, Ohno T, Shibata A, Oike T, Nakano T. FGFR Signaling as Candidate Therapeutic Target for Cancers Resistant to Carbon Ion Radiotherapy. Int. J. Mol. Sci. 20: 4563, 2019.廳棻巕慄帯椕屻偺巕媨栩娻嵞敪徢椺偵偮偄偰丄409偺偑傫娭楢堚揱巕偺僄僋僜儞僔乕僋僄儞僗傪峴偄丄嵞敪偵娭傢傞帯椕昗揑岓曗偲偟偰僔僌僫儖揱払場巕FGFR3/4傪摨掕偟偨丅in vitro偺宯偵偍偄偰丄FGFR慾奞嵻偼廳棻巕慄徠幩偵傛傞嶦嵶朎岠壥傪崅傔傞偙偲傪帵偟偨丅乯

    17.      Shindo T, Hirobe M, Adachi Y, Sasaki Y, Tokino T, Masumori N. Genomic characterization for familial cases with urothelial carcinoma. Int Cancer Conf J. 8: 185-89, 2019.乮擜楬忋旂娻偺壠懓撪敪徢椺乮曣偲懅巕乯偵偮偄偰栐梾揑僎僲儉夝愅傪峴偄丄堚揱惈庮釃偺壜擻惈偑掅偄偙偲傪帵偟偨丅

    18.      Fukamachi H, Kim SK, Koh J, Lee HS, Sasaki Y, Yamashita K, Nishikawaji T, Shimada S, Akiyama Y, Byeon SJ, Bae DH, Okuno K, Nakagawa M, Tanioka T, Inokuchi M, Kawachi H, Tsuchiya K, Kojima K, Tokino T, Eishi Y, Kim YS, Kim WH, Yuasa Y, Tanaka S: A subset of diffuse-type gastric cancer is susceptible to mTOR inhibitors and checkpoint inhibitors. Exp Clin Cancer Res 38: 127, 2019.乮堓娻PDX (Patient-Derived Xenograft)偺僎僲儉夝愅偵傛傝丄掅暘壔堓娻偼惓忢堓忋旂偐傜捈愙敪徢偡傞孮偲暘壔宆堓娻偐傜曄壔偡傞孮偵暘椶偝傟丄屻幰偼柶塽僠僃僢僋億僀儞僩慾奞嵻偑桳岠偱偁傞壜擻惈傪柧傜偐偵偟偨丅乯

    19.      Adachi Y, Mita H, Sasaki Y, Himori R, Onodera K, Nakamura M, Kikuchi T, Yamashita K, Yoshida Y, Ishii Y, Endo T. Malignant paraganglioma of posterior mediastinum ? a case report with genetic analysis. Mol Clin Oncol 10: 10-16, 2019.乮椪彴丄昦棟妛揑偵妋掕恌抐偑崲擄偱偁偭偨屻廲妘庮釃徢椺偺栐梾揑僎僲儉夝愅傪峴偄丄偦偺堚揱巕堎忢偺摿挜偐傜丄Malignant paraganglioma乮埆惈朤恄宱愡庮乯偺壜擻惈偑崅偄偙偲傪帵偟偨丅乯

    20.      Harada T, Yamamoto E, Yamano HO, Aoki H, Matsushita HO, Yoshikawa K, Takagi R, Harada E, Tanaka Y, Yoshida Y, Eizuka M, Yorozu A, Sudo G, Kitajima, H, Niinuma, T, Kai, M, Sasaki, Y, Tokino, T, Sugai, T, Nakase, H, Suzuki, H. Surface microstructures are associated with mutational intratumoral heterogeneity in colorectal tumors. J Gastroenterol 53: 1241-52, 2018.乮戝挵庮釃偵偍偗傞撪帇嬀強尒偲丄怴婯偵奐敪偟偨戝挵娻堚揱巕僷僱儖傪梡偄偰夝愅偟偨僎僲儉堎忢偲偺娭楢惈傪暘愅偟偨丅乯

    21.      Nuryadi E, Sasaki Y (Contributed equally), Hagiwara Y, Bunga Mayang Permata T, Sato H, Komatsu S, Yoshimoto Y, Murata K, Ando K, Kubo N, Okonogi N, Takakusagi Y, Adachi A, Iwanaga M1, Tsuchida K, Tamaki , Noda S, Hirota Y, Shibata A, Ohno T, Tokino T, Oike T, Nakano T. Mutational analysis of uterine cervical cancer that survived multiple rounds of radiotherapy. Oncotarget 9: 32642-52, 2018.乮嵞敪傪孞傝曉偡巕媨栩娻偺嵞敪慜偲3夞偺嵞敪屻偺FFPE僒儞僾儖偺僎僲儉夝愅傪峴偭偨丅嵞敪丄帯椕掞峈惈偵娭梌偡傞僎僲儉堎忢傪摨掕偟丄巕媨栩娻恑揥偵偍偗傞堄媊傪in vitro偺宯偱夝愅偟偨丅乯

    22.      Nakagaki T, Tamura M, Kobashi K, Omori A, Koyama R, Idogawa M, Ogi K, Hiratsuka H, Tokino T, Sasaki Y (Corresponding author). Targeted next-generation sequencing of 50 cancer-related genes in Japanese patients with oral squamous cell carcinoma. Tumor Biol 40: 1010428318800180, 2018.乮擔杮恖岥峯滸暯忋旂娻80徢椺偵偮偄偰偑傫娭楢堚揱巕偺儂僢僩僗億僢僩夝愅傪峴偭偨丅偦偺寢壥丄50亾偺徢椺偱TP53曄堎傪擣傔丄CDKN2APIK3CA偺曄堎偑崅昿搙偱偁傞偙偲傪柧傜偐偵偟偨丅傑偨cfDNA夝愅偑帯椕岠壥敾掕偵桳岠偱偁傞偙偲傪帵偟偨丅乯

    23.      Takashima Y, Sasaki Y, Hayano A, Homma J, Fukai J, Iwadate Y, Kajiwara K, Ishizawa S, Hondoh H, Tokino T, Yamanaka R. Target amplicon exome-sequencing identifies promising diagnosis and prognostic markers involved in RTK-RAS and PI3K-AKT signaling as central oncopathways in primary central nervous system lymphoma. Oncotarget 9: 27471-86, 2018.乮斾妑揑傑傟側擼庮釃偱偁傞拞悤恄宱宯尨敪埆惈儕儞僷庮偵偮偄偰丄409偺偑傫娭楢堚揱巕偺曄堎丄僐僺乕悢堎忢夝愅傪峴偄丄梊屻丄帯椕岠壥偲娭楢偡傞堚揱巕堎忢丄僷僗僂僄僀傪摨掕偟偨丅乯

    24.      Udagawa C, Sasaki Y, Suemizu H, Ohnishi Y, Ohnishi H, Tokino T, Zembutsu H. Targeted sequencing reveals genetic variants associated with sensitivity of 79 human cancer xenografts to anticancer drugs. Exp Ther Med 15: 1339-59, 2018.79庬椶偺僸僩xenograft儌僨儖偵偮偄偰丄偑傫娭楢409堚揱巕偺栐梾揑僎僲儉夝愅傪峴偄丄峈娻嵻姶庴惈偵娭楢偡傞堚揱巕懡宆傪摨掕偟偨丅乯

    25.      Nakagaki T, Tamura M, Kobashi K, Koyama R, Fukushima H, Ohashi T, Idogawa M, Ogi K, Hiratsuka H, Tokino T, Sasaki Y (Corresponding author). Profiling cancer-related gene mutations in oral squamous cell carcinoma from Japanese patients by targeted amplicon sequencing. Oncotarget 8: 59113-22, 2017.乮儂儖儅儕儞屌掕僒儞僾儖傪娷傓岥峯娻徢椺偵偮偄偰丄偑傫娭楢409堚揱巕偺曄堎僾儘僼傽僀儖傪夝愅偟偨丅擔杮恖岥峯娻偺堚揱巕堎忢偺摿挜傪弶傔偰柧傜偐偵偟偨丅乯

    26.      Sasaki Y (Corresponding author), Tamura M, Koyama R, Nakagaki T, Adachi Y, Tokino T. Genomic characterization of esophageal squamous cell carcinoma: Insights from next-generation sequencing. World J Gastroenterol 22: 2284-93, 2016.乮怘摴滸暯忋旂娻偺僎僲儉堎忢偵偮偄偰偺憤愢榑暥乯

    27.      Ikeda H, Ishiguro K, Igarashi T, Aoki Y, Hayashi T, Ishida T, Sasaki Y (Corresponding author), Tokino T, Shinomura Y. Molecular diagnostics of a single drug-resistant multiple myeloma case using targeted next-generation sequencing. Onco Targets Ther 8: 2805-15, 2015.乮媫懍偵恑峴偟丄帯椕掞峈惈偲側偭偨崪悜庮徢椺偺栐梾揑僎僲儉夝愅傪峴偄丄NF-內B宱楬偵懏偡傞暋悢偺堚揱巕偺曄堎丄僐僺乕悢堎忢偑擣傔傜傟傞偙偲傪柧傜偐偵偟偨丅乯


俀丏偑傫梷惂堚揱巕p53偲偦偺僼傽儈儕乕乮p73, p63乯偺婡擻夝柧


丂p53偼僸僩庮釃偵偍偄偰嵟傕崅昿搙偵曄堎傪擣傔傞偑傫梷惂堚揱巕偱偁傞丅嵶朎偑DNA懝彎側偳偺僗僩儗僗傪庴偗傞偲丄p53偼妶惈壔偟丄揮幨場巕偲偟偰僎僲儉忋偺墳摎攝楍偵寢崌偡傞偙偲偱丄嵶朎廃婜掆巭丄傾億僩乕僔僗丄榁壔傗僎僲儉埨掕惈側偳偵娭傢傞昗揑堚揱巕傪揮幨惂屼偟偰偄傞丅嵟嬤偺尋媶偱偼丄偙傟傜偺婡擻偵壛偊丄偑傫嵶朎偺怹弫偲梀憱丄偦偟偰揮堏傪惂屼偟偰偄傞偙偲偑帵偝傟偰偄傞丅p73丄p63偼p53僼傽儈儕乕偲偟偰摨掕偝傟丄DNA寢崌椞堟偱摿偵崅偄憡摨惈傪帵偟丄p53偲峔憿揑丒婡擻揑椶帡惈偑崅偄偙偲偑悇應偝傟偰偄傞丅傑偨p53偲偼堎側傝p73丄p63偵偼alternative splicing偵傛傞暋悢偺傾僀僜僼僅乕儉偑懚嵼偡傞丅僲僢僋傾僂僩儅僂僗偺昞尰宆偺夝愅偐傜p73丄p63偼惓忢慻怐偺敪惗丒暘壔偵娭梌偡傞側偳丄p53偲偼慡偔堎側偭偨婡擻傕崌傢偣帩偮偙偲傕柧傜偐偵側偭偰偒偨丅p73兝傗p63兞傪嵶朎偵嫮惂敪尰偝偣偨応崌丄p53昗揑堚揱巕偺揮幨傪妶惈壔偟丄傾億僩乕僔僗傕桿摫偱偒傞丅偙傟傑偱偵儅僀僋儘傾儗僀丄師悽戙僔乕僋僄儞僒乕傪梡偄偰丄20埲忋偺p53僼傽儈儕乕偺昗揑堚揱巕傪摨掕偟偰偒偨丅崱屻傕栰惗宆丒曄堎宆p53 偵傛偭偰惂屼偝傟傞抈敀僐乕僪堚揱巕丄旕僐乕僪RNA乮miRNA, lncRNA側偳乯傪岠棪揑偵摨掕偟丄偦偺婡擻夝愅偵敪揥偝偣傞丅偝傜偵椪彴専懱偵偍偗傞敪尰堎忢丄峔憿堎忢乮堚揱巕曄堎丄僐僺乕悢堎忢摍乯偺暘愅傪捠偠偰丄p53 僱僢僩儚乕僋偵傛傞庮釃梷惂儊僇僯僘儉偺偝傜側傞棟夝傪栚巜偟偰偄傞丅

庡側娭楢嬈愌丗
  1. 1.        Suzuki N, Idogawa M, Tange S, Ohashi T, Sasaki Y, Nakase H, Tokino T. p53-induced ARVCF modulates the splicing landscape and supports the tumor suppressive function of p53. Oncogene. 39: 2202-2211, 2020.怴婯p53昗揑堚揱巕偲偟偰Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (ARVCF)傪摨掕偟偨丅婡擻夝愅偵傛傝丄ARVCF偼庮釃摿堎揑側僗僾儔僀僔儞僌曄壔偵娭梌偟丄庮釃梷惂偵婑梌偡傞偙偲傪柧傜偐偵偟偨丅乯

    2.        Idogawa M, Nakase H, Sasaki Y, Tokino T. Prognostic Effect of Long Noncoding RNA NEAT1 Expression Depends on p53 Mutation Status in Cancer. J Oncol. 4368068, 2019.乮僸僩庮釃偵偍偗傞p53昗揑lncRNA NEAT1偺敪尰偲p53曄堎丄梊屻偲偺憡娭傪暘愅偟偨丅偦偺寢壥丄NEAT1p53栰惗宆偺偑傫徢椺偱偑傫梷惂婡擻傪敪婗偟偰偄傞壜擻惈傪柧傜偐偵偟偨丅乯

    3.        Tokino T, Idogawa M, Sasaki Y. Fledglings in p53 signaling network. Oncotarget 8: 55768-69, 2017.

    4.        Koyama R, Tamura M, Nakagaki T, Ohashi T, Idogawa M, Suzuki H, Tokino T, Sasaki Y (Corresponding author). Identification and characterization of a metastatic suppressor BRMS1L as a target gene of p53. Cancer Sci 108: 2413-21, 2017.p53偺怴婯昗揑堚揱巕偲偟偰Breast cancer metastasis suppressor 1-like (BRMS1L) 傪摨掕偟丄偑傫嵶朎偺怹弫擻傪梷惂偡傞偙偲傪柧傜偐偵偟偨丅傑偨丄BRMS1Lp53偺揮幨妶惈傪憹嫮偡傞曗彆場巕偱偁傞壜擻惈傪帵偟偨丅乯

    5.        Idogawa M, Ohashi T, Sasaki Y, Nakase H, Tokino T. Long non-coding RNA NEAT1 is a transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function. Int J Cancer 140: 2785-91, 2017.p53偵傛偭偰揮幨惂屼偝傟傞lncRNA偲偟偰NEAT1傪摨掕偟丄NEAT1p53偺揮幨妶惈壔擻傪懀恑偟偰偄傞偙偲傪柧傜偐偵偟偨丅僸僩庮釃偵偍偄偰丄NEAT1掅敪尰偑梊屻晄椙偲憡娭偟偰偄傞偙偲傪帵偟偨丅乯

    6.        Ohashi T, Idogawa M, Sasaki Y, Tokino T. p53 mediates the suppression of cancer cell invasion by inducing LIMA1/EPLIN. Cancer Lett 390: 58-66, 2017.p53偵傛偭偰揮幨妶惈壔偝傟傞昗揑堚揱巕偲偟偰LIMA1傪摨掕偟丄LIMA1p53偵傛傞嵶朎怹弫梷惂偵娭傢偭偰偄傞偙偲傪柧傜偐偵偟偨丅偝傜偵僸僩庮釃偵偍偄偰丄LIMA1掅敪尰偑梊屻晄椙偲憡娭偟偰偄傞偙偲傪帵偟偨丅乯

    7.        Sasaki Y (Corresponding author), Tamura M, Takeda K, Ogi K, Nakagaki T, Koyama R, Idogawa M, Hiratsuka H, Tokino T. Identification and characterization of the intercellular adhesion molecule-2 gene as a novel p53 target. Oncotarget 7: 61426-37, 2016. p53僼傽儈儕乕偺昗揑堚揱巕偲偟偰ICAM2傪摨掕偟丄ICAM2ERK僔僌僫儖傪惂屼偟丄偑傫嵶朎偺梀憱擻丄怹弫擻傪梷惂偡傞偙偲傪帵偟偨丅偝傜偵p53曄堎傪帩偮僸僩庮釃偵偍偄偰丄ICAM2敪尰偑掅壓偟偰偄傞偙偲傪柧傜偐偵偟偨丅乯

    8.        Tamura M, Sasaki Y (Corresponding author), Kobashi K, Takeda K, Nakagaki T, Idogawa M, Tokino T. CRKL oncogene is downregulated by p53 through miR-200s. Cancer Sci 106: 1033-40, 2015.p53僼傽儈儕乕偺昗揑miRNA偲偟偰miR-200僼傽儈儕乕乮miR-200b/200a/429丄偍傛傃miR-200c/141僋儔僗僞乕乯傪摨掕偟偨丅miR-200b/200c/429偑娻堚揱巕CRKL偺敪尰傪梷惂偟丄嵶朎憹怋傪惂屼偟偰偄傞偙偲傪柧傜偐偵偟偨丅乯

    9.        Idogawa M, Ohashi T, Sugisaka J, Sasaki Y, Suzuki H, Tokino T. Array-based genome-wide RNAi screening to identify shRNAs that enhance p53-related apoptosis in human cancer cells. Oncotarget. 5: 7540-48, 2014.乮儗儞僠僂僀儖僗shRNA儔僀僽儔儕傪梡偄偨婡擻揑僗僋儕乕僯儞僌偐傜丄p53桿摫惈傾億僩乕僔僗傪憹嫮偡傞shRNA傪暋悢摨掕偟偨丅p53偲摨掕偟偨shRNA偺摨帪敪尰偑丄偑傫帯椕偵桳岠偱偁傞壜擻惈傪帵偟偨丅乯

    10.      Tamura M, Sasaki Y (Corresponding author, Contributed equally), Koyama R, Idogawa M, Tokino T. Forkhead transcription factor FOXF1 is a novel target gene of the p53 family and regulates cancer cell migration and invasiveness. Oncogene 33:4837-46, 2014. p53僼傽儈儕乕偺昗揑堚揱巕偲偟偰forkhead box transcription factor FOXF1傪摨掕偟偨丅FOXF1p53僼傽儈儕乕偺壓棳偱丆E-cadherin偺敪尰挷愡傪夘偟偰偑傫嵶朎偺梀憱丒怹弫偵娭傢傞庮釃梷惂暘巕偲偟偰婡擻偟偰偄傞偙偲傪帵偟偨丅乯

    11.      Idogawa M, Ohashi T, Sasaki Y, Maruyama R, Kashima L, Suzuki H, Tokino T. Identification and analysis of large intergenic non-coding RNAs regulated by p53 family members through a genome-wide analysis of p53-binding sites. Hum Mol Genet 23:2847-57, 2014.p53抈敀偑僎僲儉忋偵寢崌偡傞晹埵傪ChIP-seq偵傛傝栐梾揑偵夝愅偟偨偲偙傠丄53抈敀偑堚揱巕娫椞堟偵傕寢崌偟偰偄傞偙偲傪柧傜偐偵偟偨丅傑偨丄p53偵傛傝揮幨妶惈壔偝傟傞23lincRNA傪摨掕偟丄偦偺堦晹偼p53桿摫惈傾億僩乕僔僗偵娭楢偟偰偄偨丅乯

    12.      Ohashi T, Idogawa M, Sasaki Y, Suzuki H, Tokino T. AKR1B10, a transcriptional target of p53, is downregulated in colorectal cancers associated with poor prognosis. Mol. Cancer Res 11:1554-63, 2013. p53偵傛偭偰揮幨妶惈壔偝傟傞昗揑堚揱巕偲偟偰AKR1B10傪摨掕偟丄傾億僩乕僔僗桿摫擻傪桳偟偰偄傞偙偲傪柧傜偐偵偟偨丅AKR1B10偼戝挵娻慻怐偱敪尰掅壓偟偰偍傝丄梊屻晄椙場巕偱偁傞偙偲傪帵偟偨丅乯

    13.      Sasaki Y, Koyama R, Maruyama R, Hirano T, Tamura M, Sugisaka J, Suzuki H, Idogawa M, Shinomura Y, Tokino T. CLCA2, a target of the p53 family, negatively regulates cancer cell migration and invasion. Cancer Biol Ther 13:1512-21, 2012.p53僼傽儈儕乕偺昗揑堚揱巕偲偟偰chloride channel accessory-2 (CLCA2)傪摨掕偟偨丅CLCA2p53僼傽儈儕乕偺壓棳偱丄focal adhesion kinase (FAK)偺揮幨惂屼傪夘偟偰偑傫嵶朎偺梀憱丒怹弫偵娭偭偰偄傞偙偲傪帵偟偨丅乯

    14.      Sasaki Y, Oshima Y, Koyama R, Kashima L, Idogawa M, Yamashita T, Toyota M, Imai K, Shinomura Y, Tokino T. A novel approach to cancer treatment using structural hybrids of the p53 gene family. Cancer Gene Ther 19:749-56, 2012.p53僼傽儈儕乕儊儞僶乕偺傂偲偮p63p53椶帡偺惗棟妶惈傪傕偪丄3偮偺婎杮僪儊僀儞偱p53偲崅偄憡摨惈傪帵偟偰偄傞丅p63偺傾僀僜僼僅乕儉偺拞偱嵟傕嫮偄揮幨妶惈傪桳偡傞TAp63兞p53偺婡擻僪儊僀儞傪慻姺偊偨恖岺僴僀僽儕僢僪堚揱巕傪敪尰偡傞傾僨僲僂傿儖僗儀僋僞乕傪嶌惢偟丆偦偺峈庮釃妶惈傪夝愅偟偨丅乯

    15.      Sasaki Y, Negishi H, Idogawa M, Yokota I, Koyama R, Kusano M, Suzuki H, Fujita M, Maruyama R, Toyota M, Saito T, Tokino T. p53 negatively regulates the hepatoma growth factor HDGF. Cancer Res 71:7038-47, 2011.p53偵傛傝揮幨梷惂偝傟傞晧偺昗揑堚揱巕偲偟偰HDGF傪摨掕偟偨丅p53偵傛傝敪尰梷惂偝傟傞暘斿惈憹怋場巕偲偟偰HDGF偼弶傔偰偺曬崘偱偁傝丄p53偵傛傞HDGF偺敪尰梷惂偑娻帯椕偺昗揑偲側傝偆傞壜擻惈偑峫偊傜傟偨丅乯

    16.      Yokota I, Sasaki Y (Corresponding author), Kashima L, Idogawa M, Tokino T. Identification and characterization of early growth response 2, a zinc-finger transcription factor, as a p53-regulated proapoptotic gene. Int J Oncol 37:1407-16, 2010.p53僼傽儈儕乕偺怴婯昗揑堚揱巕early growth response-2 (EGR2)傪摨掕偟丄娻偺憹怋丆傾億僩乕僔僗桿摫擻傪梷惂偟偆傞偙偲傪柧傜偐偵偟偨丅乯

    17.      Suzuki H, Igarashi S, Nojima M, Maruyama R, Yamamoto E, Kai M, Akashi H, Watanabe Y, Yamamoto H, Sasaki Y, Itoh F, Imai K, Sugai T, Shen L, Issa JP, Shinomura Y, Tokino T, Toyota M. IGFBP7 is a p53 Responsive Gene Specifically Silenced in Colorectal Cancer with CpG Island Methylator Phenotype. Carcinogenesis 31:342-9, 2010.乮戝挵娻偱DNA儊僠儖壔偵傛傝僒僀儗儞僔儞僌偝傟偰偄傞堚揱巕偲偟偰insulin-like growth factor-binding protein 7 (IGFBP7)傪摨掕偟丄p53偺昗揑堚揱巕偱偁傞偙偲傪柧傜偐偵偟偨丅乯



information

嶥杫堛壢戝妛
堛椕恖堢惉僙儞僞乕
惗暔妛嫵幒

嫵堢尋媶搹俉F


仹060-8556
嶥杫巗拞墰嬫撿堦忦惣17挌栚
TEL.011-611-2111 ex26230
FAX.011-642-7010